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Developing a high performance platform for large-scale, high-intensity data processing is a priority for researching cost-effective 

parallel finite element methods (FEM). This paper introduces an efficient MapReduce-MPI based strategy for parallel 3D finite 
element mesh processing, demonstrates the potential benefits of this approach for optimally utilizing system resources. Preliminary 
experimental results show that the new platform improves speedup over a range of problem sizes and different machine numbers. In 
detail, this paper includes the design of scalable Hadoop algorithms for 3D FEM mesh processing; experimental evaluation of these 
algorithms on computer clusters; and discussions on the benefits and challenges of developing 3D FEM algorithms using the 
MapReduce-MPI model.   

Index Terms—Mesh; MapReduce; MPI; Finite Element Method. 
 

I. INTRODUCTION 
ARALLEL mesh processing can be beneficial for simulating 
complex electromagnetic problems required for 3D finite 

element solutions. However, the high volume of initial mesh 
data sets can significantly degrade system performance and 
diminish the benefits. Moreover, the costs of mesh processing 
are highly dependent on the underlying parallel algorithm as 
well as the system architecture. Studying a workable design 
for high performance large-scale mesh data processing is 
important for the performance of FEM simulations.  
  MapReduce has been used in multiple big data application 

domains to efficiently process huge data sets. Hadoop (when 
MapReduce is implemented) incorporates Hadoop Distributed 
File System (HDFS) has superb capabilities that can work 
with intensive data via a distributed file system. This enables 
MapReduce the possibility to be used for processing scientific 
HPC over intensive data sets. On the other side, scientific and 
engineering applications are usually both data- and 
computation-intensive; and require multiple cycles and 
chained tasks. Hadoop cannot fully address problems with 
iterative structures by itself. These limitations are inefficient 
for scientific computations directly wrapped in MapReduce 

tasks because iterative computations cannot be rapidly 
distributed over a HDFS cluster in the same way that it can 
over a traditional HPC cluster. [1]  
  MPI programs are designed to distribute data to different 

nodes, compute asynchronously in parallel, and then collect 
the results back. MPI has no data locality. MapReduce with 
HDFS duplicates data so that computation in local storage can 
occur in a way that streams off the disk straight to the 
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Fig.1 Hadoop MPI programming model: MPI manages hadoop tasks; the 
tasks are distributed among the group of MPI communicators.  

TABLE 1: ALGORITHM III  
HADOOP MANAGER ON MASTER NODE 

MapReduce MPI master node Description: enables the master node 
to perform MPI task management; locates data nodes; assigns task 
functions to find the key; and updates mesh information between 
data nodes. 
1:    for each node n in nodelist do { 
2:             MPI _INIT; to initialize MPI functions 
3:            } 
4:    for  each subdomain, do{  
5:                   Read the local data file;   
6:                   Compute Key for each iteration; as the key input 
7:    }  
8:    for  Node i in MPI task pool  on master node, do{ 
9:                 if status = ready, do  { 
10:               update task tracker and start to send task}                   
10:   }  
11:   for  Node i update adjunct list , do{ 
12:                 update adjunct edge and point list ;           
13:  }  
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Fig.2 3D HTO FEM mesh refinement on a rectangular cavity: domain 
decomposition; workload distribution; and the final refinement results.  

 
 
 
 
 
 
 
 



 

processor. MPI delivers a network-bound performance, 
MapReduce exploits local storage to avoid network 
bottlenecks when working with big data – it reduces network 
use and maximizes efficiency. For the above reasons, adding 
MPI capabilities to the MapReduce framework becomes a 
priority.  
 Efforts to integrate MPI into MapReduce framework have 

been made in various formats by researchers. Ye et al. [2] 
launched MPI tasks on a Hadoop cluster via the Hadoop 
streaming interface using a modified OpenMPI, then 
compared the performance of Gradient Boosted Decision 
Trees (GBDT) algorithms with MPI-based and MapReduce-
based implementation. In [3], T. Hoefler and al. discussed 
common strategies for implementing MapReduce runtime, and 
proposed an optimized implementation scenario of 
MapReduce on top of MPI.   

II. MAPREDUCE MPI PROGRAMMING MODEL 
   The programming paradigm in Fig.1 enables MPI to control 
Hadoop function calls and task distributions. MPI gives 
precise control over the memory and format of the data 
allocated by each processor during a MapReduce operation. 
Fig.1 illustrates the data flow of a typical MapReduce 
computation where the input files to a Hadoop program are 
fetched from the Master Node. Compute nodes executing 
instances of the map() function produce intermediate key-
value pairs that are stored on local disks. On the other side, 

compute nodes executing instances of the reduce() function 
use remote procedure calls (RPCs) to copy data to their local 
disks, and store output back on the HDFS. An HDFS server, 
map function, and reduce function may be executed on the 
same or different nodes.  [4] [5] 

III.   RESULTS    
   Our approach is demonstrated by using MapReduce-MPI  
method with Hierarchical Tetrahedral and Octahedral (HTO) 
mesh performing on a rectangular resonant cavity, as shown in 
Fig.2. The cavity was initially discretized into four smaller 
rectangular blocks; each of these blocks was subdivided into 
six tetrahedra. The resulting 24-tetrahedral mesh sub-domains 
are distributed in the parallel system, and executed on 2 to 10 
slave nodes. The algorithm specified in Tab.1 has been 
implemented. It enables the master node to control edge and 
vertex load, update the shared edge and vertex, prepare and 
deliver key values, and manage MPI. Performance 
measurements are performed on the real symmetric cluster 
system. Each node has the following configuration:  

   Results indicate that MapReduce-MPI provides a combined 
storage, processing and analysis system that can respond to the 
growth in data volume and application diversity. When 600M, 
700M and 800M HTO tetrahedral elements are produced on 2 
to 10 slave nodes, the average speedup of 1.5 to 2.4 is 
achieved comparing with regular distributed computing with 
MPI. The results are illustrated in Figs.3-4.    

IV. CONCLUSION  
  A MapReduce-MPI model has been designed and imple-
mented to enhance the performance of mesh processing for 3D 
FEM electromagnetics. Specifically MPI capabilities are 
added into MapReduce framework in order to manage the 
distributed processing on shared or distributed memories and 
storages. Detailed algorithms including domain decom-
position, data allocation pattern and distributed computing 
methods have been introduced. The experimental results have 
been measured on real systems, the performance advantage of 
using the MapReduce-MPI model has been validated.     
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Fig.3 Comparison of HTO mesh refinement execution time between using 
the MapReduce MPI (MPI-MP) and regular MPI, on the same system 
platform. The numbers of mesh element executed are 600M, 700M, and 
800M. 
 

 

 Fig.4 Comparison of performance speedup between using the MapReduce 
MPI (MPI-MP) and regular MPI, on the same system platform. The 
numbers of mesh element executed are 600M, 700M, and 800M. 
 

 
   
 
 
 

  

                                             

CPU Dual Xeon E5-2440 Memory Size 64GB RAM 
DISK  SATA 1TB x 8 Inter-node Speed 10 GE 
OS SLES 11 SP1 (3.0.13-0.27) 
MPI MPICH2 Hadoop Version Hadoop-0.20.2 

 

   


